Carrera de Bioquímica

Departamento de Biología, Bioquímica y Farmacia-UNS

Práctica de Investigación Bioquímica (optativa)

Código de Materia

Carga horaria: 50 hs

Profesor Investigador: Cecilia Bouzat

Ayudante de docencia: Facundo Chrestia

Asignaturas obligatorias Cursadas: Bioquímica 1. Biología celular: Aprobado.

Lugar de trabajo: INIBIBB

Titulo del Proyecto de Investigación Acreditado

Receptores Cys-loop: Desde el funcionamiento molecular hasta sus aplicaciones como blancos terapéuticos.

Resumen del proyecto

En el sistema nervioso, el receptor nicotínico α 7 tiene implicaciones significativas en funciones cognitivas, la atención y la memoria. Además, α 7 se expresa en células no neuronales, incluyendo células del sistema inmunológico, la glía y las células epiteliales, donde ejerce un efecto protector y antiinflamatorio. Hay amplia evidencia que respalda la potenciación de α7 como una estrategia terapéutica prometedora para tratar diversos trastornos neurodegenerativos, incluyendo enfermedad de Alzheimer y Parkinson, neurológicos, incluyendo esquizofrenia y dolor, e inflamatorios. Sin embargo, la complejidad de su funcionamiento ha dificultado su desarrollo como blanco farmacológico. Nuestro objetivo es descifrar el funcionamiento molecular del receptor $\alpha 7$ en su contexto celular y desarrollar nuevos compuestos potenciadores con proyección hacia su implementación como blanco terapéutico. Abordaremos la modulación de la funcionalidad del receptor α 7 desde diferentes perspectivas. Desde una perspectiva terapéutica, desarrollaremos compuestos moduladores alostéricos positivos de α 7 con el fin de potencialidad terapéutica. proponer nuevas moléculas líderes con determinaremos las bases estructurales de la acción moduladora de cannabidiol sobre α 7, de relevancia farmacológica. Desde una perspectiva fisiológica, analizaremos cómo la activación de otros receptores que podrían integrarse en complejos macromoleculares con α7, como el β2-adrenérgico, el NMDA-R y el EGFR, modula el funcionamiento del receptor α7, afectando la respuesta celular global. Además, determinaremos la estequiometría y propiedades funcionales de receptores heteroméricos conteniendo la subunidad α 7. Desde una perspectiva patológica, investigaremos cómo el estrés oxidativo afecta el funcionamiento del receptor y su acción protectora asociada a condiciones de neurodegeneración. El proyecto incluye técnicas de cultivo celular y de biología molecular,

expresión heteróloga de receptores, registros electrofisiológicos de canales unitarios y de corrientes macroscópicas, microscopía confocal, y ensayos in silico y herramientas computacionales.

Plan de trabajo Resumido

Para el proyecto de POIB se abordará el estudio de la modulación de α 7 por especies reactivas de oxígeno (ROS) y expresión y caracterización de α 7 en células no neuronales de epitelio pigmentario de la retina. Se investigará la presencia de α 7, el impacto del estrés oxidativo intracelular en la actividad del receptor α 7 y se analizará el rol de α 7 en la protección contra el daño oxidativo, imitando situaciones patológicas.

Los objetivos específicos son:

- Caracterización de la expresión y funcionalidad de α7 en células de epitelio pigmentario de retina (RPE) como modelo de células no neuronales. Se explorará la presencia de α7 en RPE, su actividad metabotrópica y ionotrópica, y se determinarán los efectos de su activación en la protección contra el estrés oxidativo generado por diferentes tipos de insultos, tales como los asociados a la edad o enfermedad de Alzheimer.
- Determinación del impacto del estrés oxidativo intracelular sobre la expresión y actividad de α7. Se establecerá si el aumento de niveles de especies reactivas de oxígeno (ROS) resultante de diferentes insultos se acompaña de cambios en el patrón de expresión y/o en las actividades ionotrópica y metabotrópica de α7.

Descripción de las actividades a realizar

Se utilizará la línea celular D407 de epitelio pigmentario o sistemas de expresión heteróloga mediante transfección de $\alpha 7$ en células de mamífero.

- Para medir cambios en la actividad funcional se realizarán registros electrofisiológicos de corrientes unitarias para evaluar la función ionotrópica, mientras que para la metabotrópica se recurrirá a la medición de calcio intracelular tras la activación con ACh utilizando sondas fluorescentes y microscopía confocal de fluorescencia, o se medirán vías de señalización tras la activación de α7 mediante qPCR.
- -Para medir cambios en el nivel de expresión, se realizarán ensayos de binding con α -bungarotoxina (antagonista competitivo) marcada con Alexa 488, inmunocitoquímica con un anticuerpo anti- α 7, o se expresará la subunidad α 7 con la proteína mCherry incorporada. Se medirá la fluorescencia por microscopía confocal, fluorímetro de placa, o citometría de flujo y se determinará la proporción de expresión entre membrana e interior celular.
- -Para la generación del estrés oxidativo se incubarán las células que expresan α7 con diferentes compuestos que induzcan la producción endógena de ROS, para posteriormente evaluar la función del receptor.

El proyecto incluye el aprendizaje de técnicas de cultivo celular, transfección, patch clamp para registros de canales únicos y el análisis, unión de ligandos marcados, microscopía, fluorescencia y qPCR.
Cuatrimestre: Segundo
Cupo de alumnos: 2
Carga horaria semanal: 6 hs

Modalidad de Evaluación:

- Entrega de un informe con formato de trabajo científico
- Exposición Oral: Se realizará en presencia de todos los alumnos de la materia y los profesores respectivos y al menos un integrante de la CCB (hasta 15 minutos)